skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Pierce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 19, 2026
  2. Gridded datasets occur in several domains. These datasets comprise (un)structured grid points, where each grid point is characterized by XY(Z) coordinates in a spatial referencing system. The data available at individual grid points are high-dimensional encapsulating multiple variables of interest. This study has two thrusts. The first targets supporting effective management of voluminous gridded datasets while reconciling challenges relating to colocation and dispersion. The second thrust is to support sliding (temporal) window queries over the gridded dataset. Such queries involve sliding a temporal window over the data to identify spatial locations and chronological time points where the specified predicate evaluates to true. Our methodology includes support for a space-efficient data structure for organizing information within the data, query decomposition based on dyadic intervals, support for temporal anchoring, query transformations, and effective evaluation of query predicates. Our empirical benchmarks are conducted on representative voluminous high dimensional datasets such as gridMET (historical meteorological data) and MACA (future climate datasets based on the RCP 8.5 greenhouse gas trajectory). In our benchmarks, our system can handle throughputs of over 3000 multi-predicate sliding window queries per second. 
    more » « less